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60. Interference of two beams following
different paths.
Consider two beams A and B. At (early) plane
P , the relative properties of the two beams
are well understood; for example, a single laser
beam may be split into two. Between plane P
and (late) plane Q, the beams follow different
paths A and B through a nondispersive medium
(vgroup = vphase); by the time they reach plane Q
they have recombined. (For example, a Michel-
son interferometer may be interposed between
the two planes.) At P and Q define

physical �EA,B(P,Q) ≡ Re
(
�EA,B

P,Q e
−iωt

)

(this is four equations). On the left-hand side are
physical fields that vary rapidly (≈ sinusoidally)
with time t; on the right-hand side are complex
fields �EA,B

P,Q having magnitudes that are fixed,
but phases that vary more slowly, over many
sinusoidal periods. This slow variation may oc-
cur separately for the x and y components of a
beam’s electric field – in which case the beam
is completely unpolarized – or it may occur in
lockstep for the x and y components together,
in which case the beam remains fully polarized.

The optical phase shifts for paths A and B are
equal to

ωτA,B ≡
∫ Q

P

�kA,B · d�rA,B

τ ≡ τB − τA ,

where �kA,B(�r) is the wave vector for beam A or
B, respectively, and d�rA,B lies along the path
for beam A or B.
(a.)
The (undispersed) physical waves remain func-
tions of (�kA,B · �rA,B − ωt), even as these slow
phase variations occur. Use this fact to show that

physical �EA,B(Q)(t+ τA,B) =

physical �EA,B(P )(t) .

Hint:
Temporarily assume that the complex fields
�EA,B

P,Q are constant. Then show that the phys-
ical fields at P and Q, which are functions of
(�kA,B · �rA,B − ωt), are related by

physical �EA,B(Q)(t′) = physical �EA,B(P )(t) ×

× exp
(
i
(∫ Q

P

�kA,B · d�rA,B − ω(t′ − t))) .

Now, allow the phases of �EA,B
P,Q to vary slowly.

In the above equation, plug in

t′ = t+
1
ω

∫ Q

P

�kA,B · d�rA,B

≡ t+ τA,B ,

so that the epoch of slow phase variation is the
same at Q as it is at P .
(b.)
Using the result of part (a.), show that

�EA,B
Q (t+ τA,B) = �EA,B

P (t) exp (iωτA,B) .

Hint:
Express the physical fields in terms of the com-
plex fields.
(c.)
At any other time t′, the result of (b.) also holds.
Choose t′ = t− τ . Show that

�EB
Q(t+ τA) = �EB

P (t− τ) exp (iωτB) .

(d.)
The irradiance

I = 1
2

√
ε
µ | �EA + �EB |2

for the superposition of the two beams satisfies

2
√

µ
ε IP,Q = | �EA

P,Q|2+| �EB
P,Q|2+2Re

(
�EA∗

P,Q · �EB
P,Q

)
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Using the results of (b.) and (c.), show that

IQ(t+ τA) = IA + IB +

+ 1
2

√
ε
µ 2Re

(
�EA∗

P (t) · �EB
P (t− τ) exp (iωτ)

)
,

where IA,B are the (time-independent and space-
independent) single-beam irradiances.
Hint:
In the supplied expression for IQ(t+τA), express
the �EA,B

Q in terms of the �EA,B
P .

(e.)
Taking a long-time average (long compared to
the characteristic time over which the complex
electric field phases vary), obtain as a final step
the master equation for two-beam interference:

〈IA+B
Q 〉(τ) = IA + IB+

+ 1
2

√
ε
µ 〈2Re( �EA∗

P (t) · �EB
P (t− τ) exp (iωτ)

)〉 ,
where 〈〉 denotes a long-time average, and IA+B

Q

is the combined irradiance at plane Q.
Hint:
Note that 〈IA+B

Q 〉(τ) is not the combined irradi-
ance at time τ . First, τ is not a time – it is the
difference of the optical phase shifts for paths B
and A. Second, 〈IA+B

Q 〉 can’t be a function of
time, because it is already a long-term time av-
erage. Rather, 〈IA+B

Q 〉(τ) is a time-independent
irradiance that depends on the path difference
that is parametrized by τ .

61.
Please refer to the notation and results of the
previous problem. Define the correlation ΓAB(τ)
as

ΓAB(τ) ≡ 1
2

√
ε
µ 〈 �EA∗

P (t) · �EB
P (t− τ) exp (iωτ)〉 ,

and define the degree of partial coherence γAB(τ)
as

γAB(τ) ≡ ΓAB(τ)√
IAIB

.

(a.)
Show that the result of the last part of the
previous problem can be written

〈IA+B
Q 〉(τ) = IA + IB + 2

√
IAIB Re γAB(τ) .

(b.)
If the screen Q in a two-beam interference setup
deviates slightly from perfect perpendicularity
to the beams, deviations of order 10-100 oc-
cur in ωτ across the screen. For most sources
these deviations do not cause a significant change
in �EB

P (t − τ), but they do cause the phase of
exp (iωτ) to change dramatically. Correspond-
ingly there appear on the screen many light and
dark bands (“fringes”), at the center of which
the respective irradiances are Imax and Imin.
Define the fringe visibility V as

V ≡ Imax − Imin

Imax + Imin
.

If IA = IB , show that

V = |γAB(τ)| .

Hint:
In the middle of a bright (dark) fringe, γAB =
+|γAB | (γAB = −|γAB |) .
(c.)
As an experimentalist, suppose that you are re-
quired to analyze the extent to which a mystery
beam is polarized.

A standard approach would be to measure the
elements of its Stokes vector (by observing the
reduction in irradiance caused by four different
optical devices – see Problem 59); knowing the
Stokes vector, you could calculate the degree of
polarization V (Problem 59(b.)).

Instead you decide to send the beam into a
Michelson interferometer with two exactly equal-
length paths A and B. Observing the resulting
fringe pattern on screen Q, you measure the
fringe visibility V (as defined in part (b.) of this
problem).

Do you obtain any useful information about V
by measuring V? If so, what is the relationship
between the two?
Hint:
If there are slow random phase variations of the
complex field Ẽy with respect to Ẽx, a beam is
completely unpolarized. If such phase variations
were to begin, while the Michelson path lengths
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remained exactly equal, how would the observed
fringe pattern change? That is, how would the
interference of ẼA

x with ẼB
x , and ẼA

y with ẼB
y

be affected?

62.
We wish to use the light of Betelgeuse (angu-
lar diameter 0.047 arc second), passed through a
600 nm filter, as the source for a double-thin-slit
Young’s interference experiment.
(a.)
Assuming an adequately narrow filter bandpass,
roughly estimate the maximum slit separation
(in m) that would yield an interference pattern
which isn’t too badly washed out, i.e. with a
fringe visibility V of order 1

2 .
Hint:
This part is a transverse coherence problem, in-
volving a source rendered monochromatic by the
narrow filter. In the paraxial approximation,
first consider the classical two-thin-slit irradi-
ance pattern I(ψ) ∝ cos2 kd

2 ψ that would occur
if Betelgeuse were a point source. Now allow
the two (point) halves of Betelgeuse to sepa-
rate. This causes the two halves of the classical
irradiance pattern likewise to move apart. As
they do so, the primary irradiance maximum (at
ψ = 0) and first minimum (at ψ = π/kd) remain
at the same positions, but become less extreme.
Parametrize this separation by a phase ±δ that
is added to the argument of cos2. Solve for δ such
that V = 1

2 ; then relate 2δ to the (supplied) an-
gular separation of Betelgeuse’s two halves. This
fixes the slit separation d.
(b.)
Assuming an adequately small slit separation,
roughly estimate the maximum filter bandpass
(in nm) that would allow us to observe at least
20 fringes. With this choice of bandpass, what
is the coherence length of the transmitted light?
Hint:
This part is a temporal coherence problem, in-
volving a slit separation so small that, with a
monochromatic source, a very large number of
fringes would be visible. Call the central (bright-
est) fringe the 0th fringe maximum. About 10
fringes to either side, the pattern is mostly
washed out because the source is polychromatic.
This occurs when the 10th fringe maximum of

light with wavelength λ0 −∆λ/2 coincides with
the 10th fringe minimum of light with wave-
length λ0 + ∆λ/2. Use this fact to relate ∆λ
to λ (see the related discussion in p×2 section
11-2). The coherence length of the transmitted
light follows from p×2 Eq. (12-18).

63.
A monochromatic beam traveling in medium “0”
is normally incident upon a substrate “T”. A sin-
gle film “1” is interposed between the two media.
The refractive indices are, respectively, n0, n1,
and nT . You may assume that all materials have
the same magnetic permeability.
(a.)
Show that a film of thickness λ1/4 (where λ1

is the wavelength of light in the material i of
which the film is made) will reduce the re-
flectance of the substrate to zero, provided that
n1 =

√
n0nT .

Hint:
Remember that λ1 = λvacuum/n1. This allows
the film’s phase advance δ (e.g. in p×2 Eq. (19-
24)) to take the simple value π/2. Substitute the
resulting transfer matrix elements in the stan-
dard reflection formula, e.g. p×2 Eq. (19-36).
(b.)
Prove that interposing a single film of thickness
λ1/4 will always reduce the reflectance of the
substrate, provided that n0 < n1 < nT .
Hint:
After obtaining the amplitude reflectance r0,b for
the cases (no film) and (b), form the ratio r20/r

2
b

and (tentatively) set it > 1. Applying brute
force, multiply through by all denominators and
make many cancellations. Distill the resulting
inequality into one that is obviously true, given
that n0 < n1 < nT . To check your algebra, keep
in mind that every inequality should become an
equality if n1 is set to n0 or n1 is set to nT (as
these cases correspond to no film at all).

64.
Referring to the conditions of the previous prob-
lem, consider next the case of three films (“1”,
“2”, and “3”) interposed between the two me-
dia, such that film 1 adjoins medium 0 and film
3 adjoins medium T . Again, assume that all ma-
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terials have the same magnetic permeability.
(a.)
Suppose that each film has thickness λi/4 (where
λi is the wavelength of the beam in the partic-
ular material of which that film is made). Show
that the reflectance of the substrate is reduced
to zero when

n1n3

n2
=

√
n0nT .

Hint:
After you take the product of the transfer ma-
trices, the result should have diagonal elements
that vanish.
(b.)
An advantage of using three films instead of one
(as in the previous problem) is that the band of
wavelengths over which the reflectance is heavily
suppressed can be made much broader. (Your
expensive eyeglasses are coated with at least two
films.) According to Pedrotti×2 Fig. 19-7, this
benefit may be enhanced further if the middle
film (2) is doubled in thickness from λ2/4 to
λ2/2. In this case, what condition on n0, n1, n2,
n3, and nT reduces the reflectance to zero?
Hint:
Here the product of transfer matrices should be
diagonal.

65.
Consider a high-reflectance stack of the type de-
picted in Pedrotti×2 Fig. 19-8. For specificity,
assume that the stack consists of six double lay-
ers of MGF2 (n = 1.38) and ZnS (n = 2.35).
For simplicity, assume that the medium from
which the light enters the stack (medium 0) and
the medium into which the light exits the stack
(medium T ) are vacuum. Again, assume that all
materials have the same magnetic permeability.
(a.)
Numerically, what fraction T of the incident ir-
radiance is transmitted by the stack?
Hint:
Consider one double layer. When both films in
the double layer have thickness λi/4 (where λi

is the wavelength in the medium of layer i), the
product of the transfer matrices for the two lay-
ers is diagonal. Therefore the transfer matrix
for N double layers is simply the transfer matrix

for one layer raised to the N th power (see p×2
Eq. (19-50)).
(b.)
The stack is now modified as follows: the
upstreammost three double layers are flipped
around so that the stack indices are L(ow) H(igh)
L H L H H L H L H L. This is a Fabry-Perot in-
terference filter. It has a transmission maximum
at the wavelength for which it was designed, as
opposed to the transmission minimum achieved
by the configuration of part (a.). Calculate
the fraction T of the incident irradiance that is
transmitted by the modified stack.
Hint:
When the order of the films is inverted, the diag-
onal elements of the transfer matrix for the dou-
ble layer are interchanged. To what extremely
simple form does the N -element transfer matrix
reduce?

66. Green’s theorem.
Denote by �G a vector field, and start from the
divergence theorem

∫
∇ · �Gdτ =

∮
�G · n̂ da ,

where n̂ is the (outward) direction of the surface
area element d�a, and the left-hand integral ex-
tends over the volume enclosed by the right-hand
surface.
(a.)
Substituting �G = V∇U , where V and U are
scalar fields, show that

∫(∇V · ∇U + V∇2U
)
dτ =

∮
V
∂U

∂n
da .

Hint:
Use the fact that

(∇U) · n̂ ≡ ∂U

∂n
.

(b.)
Show that
∫(
V∇2U − U∇2V

)
dτ =

∮ (
V
∂U

∂n
− U ∂V

∂n

)
da .
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Hint:
Repeat part (a.) with �G = U∇V . Then sub-
tract one of the two resulting equations from the
other.
(c.)
If V and U both satisfy the scalar Helmholtz
equation,

(∇2 + k2
)
(U, V ) = 0 ,

where k is a constant, show that

0 =
∮ (
V
∂U

∂n
− U ∂V

∂n

)
da .

This is Green’s theorem for solutions to the
scalar Helmholtz equation.
Hint:
Substitute k2 U, V for ∇2 U, V in the result of
part (b.).

67. Fresnel-Kirchoff integral theorem.
Please use the notation and results of the previ-
ous problem.
(a.)
Consider a closed surface consisting of an inner
sphere of radius R, centered at the origin, and
an arbitrary closed outer surface A. Apply the
result of part (c.) to the combined surface. Take
V to be an inward-propagating spherical wave

V = V0
ei(kr+ωt)

r
.

In the limit R→ 0, show that

U(0) = 1
4π

∮ (eikr

r

∂U

∂n
− U ∂

∂n

(eikr

r

))
da ,

where the integral is taken only over A. This is
the Kirchoff integral theorem.
Hint:
Factoring out V0 e

iωt , this is equivalent to show-
ing that, in the limit R → 0, the integral over
the inner spherical surface reduces to −4π U(0).
(Note that the normal to this surface is −r̂ .)
(b.)
Now punch a hole (“aperture”) in A. Place a
point source S outside A; the origin (now called
“observation point P”) still lies inside A. The

source radiates an outward-propagating scalar
spherical wave

U = U0
ei(kr′−ωt)

r′
,

where �r ′ is a vector from S to a point in space.
Using the result of (a.), assume that the opac-
ity of the remainder of A allows the integral to
be carried out over only the aperture (“ap”). In
the far zone limit kr′, kr � 1, show that

UP =
−ikU0e

−iωt

4π

∫
ap

eik(r+r′)

rr′
(
r̂ · n̂− r̂′ · n̂) da ,

where �r (�r′) is a vector from P (point S) to a
point on the element of aperture da, and n̂ is
the (outward from P ) normal to da. This is the
Fresnel-Kirchoff integral theorem; it is the start-
ing point for the study of diffraction in the scalar
field approximation.
Hint:
Substitute

U = U0
ei(kr′−ωt)

r′

in the result of part (a.) and perform the indi-
cated differentiation. In analogy to the hint to
part (a.) of the previous problem, note that

∂

∂n

eikr′

r′
=

(∇′ e
ikr′

r′
) · n̂ ,

where ∇′ is the gradient with respect to the
coordinate �r ′.

68. Knife-edge diffraction.
A plane wave of initial irradiance I0 propa-
gating along ẑ is incident upon a semi-infinite
totally absorbing screen lying in the z = 0 plane.
The screen extends from −∞ < x < ∞ and
−∞ < y < 0. An observer stationed at (0, 0, z),
where kz � 1, detects an irradiance I ′. What is
I ′/I0, and why?
Hint:
Using z = 0 as the aperture plane, equate the
optical disturbance UP to a Fresnel-Kirchoff in-
tegral over that plane, (a.) for the case in which
there is no absorber, and (b.) for the knife-edge
case in which the absorber covers y < 0. Con-
sidering that the source is a plane wave with no
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y dependence, and that the observer is stationed
at the up-down symmetry point y = 0, how is
integral (b.) related to integral (a.)? How is U
related to the irradiance?

69. Fourier diffraction.
The convolution of two functions f(x) and g(x),
denoted by (f ⊗ g)(x), is defined by

f ⊗ g ≡
∫ ∞

−∞
dx′ f(x′) g(x− x′) .

Define the Fourier transform Fµ

(
g(x)

)
by

Fµ

(
g(x)

) ≡
∫ ∞

−∞
dx g(x) e−iµx .

(a.)
As a warmup, prove that

f ⊗ g = g ⊗ f .

Hint:
Substitute u′ = x − x′ in the convolution inte-
gral.
(b.)
For use in part (d.), prove that

Fµ

(
f(x)⊗ g(x)) = Fµ

(
f(x)

)Fµ

(
g(x)

)
.

Hint:
Write Fµ

(
f(x) ⊗ g(x)

)
as a double integral∫

dx
∫
dx′ . . . . Reverse the order of integra-

tion and substitute u = x − x′. Express the
result as the product of an integral over u of
purely u-dependent terms, × an integral over x′

of purely x′-dependent terms.
(c.)
If f(x) is the aperture function for a pair of thin
slits separated by d,

f(x) ∝ δ(x− d
2 ) + δ(x+

d
2 ) ,

and if g(x) is the aperture function of a single
slit of thickness a,

g(x) ∝ θ(x+ a
2 )− θ(x− a

2 ) ,

show that f ⊗ g is the aperture function corre-
sponding to two slits of thickness a, separated

(centerline-to-centerline) by d.
Hint:
As your intuition develops, this proposition will
become obvious, but here you are asked to show
it formally. Do so by carrying out the convo-
lution integral, evaluating the integrand at the
points where one of the δ-functions is nonzero.
Note that the θ-function θ(u) steps from 0 at
u < 0 to 1 at u > 0.
(d.)
In the Fraunhofer approximation, where �r ′ and
�r (cf. Problem 67) are paraxial and the wave-
front curvature across the aperture is negligible,
the scalar “optical disturbance” amplitude is

UP (µ, ν) ∝
∫ ∞

−∞
dx

∫ ∞

−∞
dy g(x, y)e−i(µx+νy) ,

where UP is measured at the transform plane
(X,Y ), the aperture function g is measured at
the aperture plane (x, y), µ and ν are defined by

µ ≡ kX

f
ν ≡ kY

f
,

and f is the focal length of the thin field lens lo-
cated an equidistance f from the aperture and
transform planes. Write down the diffraction
pattern

IN (ψx, ψy)
I1(0, 0)

for N slits of center-to-center separation ∆x = d
and thicknesses δx = a and δy = b, where

(sin)ψx ≡ X

f

(sin)ψy ≡ Y

f
.

You may use the fact – directly obtainable by
applying the Fourier transform – that

IN (ψx)
I1(0)

= N2 sin2
(

Nkd
2 sinψx

)
(
N sin (kd

2 sinψx)
)2

for N thin slits of infinite length and separation
d, and that

I(ψx)
I(0)

= sinc2
(

ka
2 sinψx

)
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for a single slit of infinite length and thickness a.
Hint:
Building on the result of part (c.), use your intu-
ition to express the aperture function for N thick
slits as the convolution of the aperture function
for N thin slits and the aperture function for
one thick slit. Also use the fact that the Fourier
transform of the product of two functions of dif-
ferent variables (x and y here) is the product of
the Fourier transforms. Then exploit the result
of part (b.).

70. Quadruple slit.
Consider four equally spaced long (∆y = ∞)
thin slits, located at x = ±d

2 and x = ±3d
2 . As

usual, tanψx = dx
dz of the outgoing wavefront.

(a.)
Write down the standard result

R(ψx) ≡ I(ψx)
I(ψx = 0)

for the Fraunhofer diffraction pattern from N =
4 equally spaced thin slits.
Hint:
See part (d.) of the previous problem.
(b.)
Consider the full diffracted amplitude to be the
superposition of the diffracted amplitudes from
a pair of slits at x = ±d

2 and a pair of slits
at x = ± 3d

2 . Write down R(ψx) as a quantity
proportional to the modulus2 of the sum of the
diffracted amplitudes from the two pairs of slits.
Hint:
The standard result for a pair of thin slits of full
separation D (Young’s experiment) is

U(ψx) ∝ cos (kD
2 sinψx) .

(c.)
Consider the aperture function for these four
slits to be the convolution of a pair of δ-functions
separated by d and another pair of δ-functions
separated by 2d (both pairs are symmetric about
x = 0). Write down R(ψx) as the product of
two two-slit R’s.
(d.)
Are your answers to parts (a.), (b.), and (c.)
equivalent? Why or why not?

Hint:
Do all three methods represent valid approaches
to the same physical problem?

71. Fuzzy thick slit.
Please use the notation and results of the pre-
vious problem. Consider a trapezoidal aperture
function

g(x) = 1 |x| < a
2

= 0 |x| > a
= 2

a (x+ a) − a < x < −a
2

= 2
a (a− x) a

2 < x < a .

Fraunhofer conditions apply. Under these condi-
tions, calculate the slit’s diffraction pattern

R(ψx) ≡ I(ψx)
I(ψx = 0)

.

Hint:
The convolution of two identical slits of thick-
ness D

2 is an isosceles triangle of base D. This
could be considered to be a trapezoid with a
plateau of zero length. How would you adjust
the two slit thicknesses to obtain the trapezoid
base and plateau which the problem specifies?

72. Thick slits with wave plates.
A linearly (x̂) polarized plane EM wave traveling
along ẑ is incident on an opaque baffle located
in the plane z = 0. The baffle has two slits cut
in it, which are of infinite extent in the ŷ di-
rection. In the x̂ direction, the slit widths are
each a and their center-to-center distance is d.
(Obviously d > a, but you may not assume that
d � a.) The top and bottom slits are each an
equal distance from x = 0.

The diffracted image is viewed on a screen lo-
cated in the plane z = L, where L � d; also
λL� d2, where λ is the EM wavelength.

Quarter-wave plates are placed in each slit. They
are identical, except that the top plate’s “slow”
(high-index) axis is along (x̂+ ŷ)/

√
2 (+45◦ with

respect to the x̂ axis), while the bottom plate’s
slow axis is along (x̂− ŷ)/√2 (−45◦ with respect
to the x̂ axis).

7



(a.)
What is the state of polarization of the diffracted
light that hits the center of the screen, at
x = y = 0? Explain.
Hint:
Divide each thick slit into N contiguous thin
slits, where N → ∞. Out of N , consider
the nth-above-the-origin together with the nth-
below-the-origin thin slits as sources of diffracted
light. When observed at the symmetry point
x = 0, the optical paths from these two thin slits
are the same. Therefore the polarization of the
light from these two thin slits will be given by
the sum of the Jones vectors for the light emerg-
ing from each slit.
(b.)
At what diffracted angle ψx does the first mini-
mum of the irradiance occur?
Hint:
Does the light from the top slit interfere with
the light from the bottom slit? See the result of
problem 52.
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